Experimental Evaluation of Inventory-Based Discrete-Updating Market Maker for Intra-firm Prediction Market System Using VIPS

نویسندگان

  • Hajime Mizuyama
  • Morio Ueda
  • Katsunobu Asada
  • Yu Tagaya
چکیده

This paper develops an intra-firm prediction market system as a collective-knowledge-based forecasting tool for a company and evaluates its performance through laboratory experiments. The system uses the variableinterval prediction security (VIPS) as the prediction security to be traded in the market and is controlled by an original computerized market maker suitable for the security type. The market maker evaluates each unit of VIPS with a Gaussian price distribution and updates the distribution intermittently through an inventory-based updating logic according to the transactions in the market. Laboratory experiments are conducted with a virtual demand forecasting problem to study whether the system functions properly as a subjective forecasting tool. The experiments confirm that the system is capable of penalizing arbitrage actions and hence its performance is fairly stable. Further, the output price distribution can serve as an approximate forecast distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Prediction Market System for Aggregating Dispersed Tacit Knowledge into a Continuous Forecasted Demand Distribution

This research proposes a novel demand forecasting method which will work effectively even in such circumstances where extrapolate-able demand patterns are hardly available. The method uses the market mechanism to aggregate tacit knowledge of the firm's sales people on the future demand of a product into a continuous forecasted demand distribution. In order to make it work, the paper introduces ...

متن کامل

Comparing Prediction Market Structures, With an Application to Market Making

Ensuring sufficient liquidity is one of the key challenges for designers of prediction markets. Various market making algorithms have been proposed in the literature and deployed in practice, but there has been little effort to evaluate their benefits and disadvantages in a systematic manner. We introduce a novel experimental design for comparing market structures in live trading that ensures f...

متن کامل

Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models

Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

An Interactive Fuzzy Satisfying Method Based on Particle Swarm Optimization for Multi-Objective Function in Reactive Power Market

Reactive power plays an important role in supporting real power transmission, maintaining system voltages within proper limits and overall system reliability. In this paper, the production cost of reactive power, cost of the system transmission loss, investment cost of capacitor banks and absolute value of total voltage deviation (TVD) are included into the objective function of the power flow ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009